

SEXLAB ANIMATIONS LOADER

MAKING ANIMATION PACKS

Adding animations to Skyrim now cannot be any simpler. The term ‘no scripting or CK experience

necessary’ is true; you do not need to compile any scripts or load the Creation Kit. The only thing

required is to edit a text file which already has a template for you to work off. And this guide will take

you through doing just that.

Before using this guide, ensure you have at least read the instructions on the download page for SexLab

Animations Loader on LoversLab and installed Python 3.x.

The version of this guide is written by Rydin. The version number is 1.1.

THIS GUIDE IS ONLY FOR MODDERS LOOKING TO CREATE A PACK OF

ANIMATIONS USING THE HKX FILES TO DISTRIBUTE AND SHARE WITH

OTHER USERS. IF YOU ARE ONLY INSTALLING THE PACKS, PLEASE

FOLLOW THE INFORMATION ON THE DOWNLOAD PAGE. THIS GUIDE IS

NOT FOR USERS AND AS NO INFORMATION ON INSTALLING THE PACKS

AS A USER.

UNDERSTAND THE BASICS

If you understand what HKX files and the standard file directory set up for mods, you can skip this section.

Before getting started, you need to know what a HKX file is. A HKX file is the extension used for

animations within Skyrim. Animators convert their animations for their chosen animating programs to

HKX files which can then be imported into game. Unfortunately, you cannot just drop the HKX file into

the animation folder and expect it to work. It has to have a script that tells the game how, where and

when to use the animation.

When a HKX is used for an animation, it is normally names in a set convention to make it easy to

identify the animation, what actor if is for and what place it has in a sequence. An animator can name

their animations anything they want but modders may have a hard time setting up a script for it if they

do not understand what each HKX files does and who it affects.

It is very important that you understand this as this is the structure that the SLAnimGenerate.pwy will

require in order to read the HKX files. The formula/structure is:

[animator]_[animname]_aX_sY.hkx

To give you an example of one:

 rydin_kissing_standing_a1_s1.hkx

Now let’s break this down. The animator in this case is “rydin” and the animname is “kissing_standing”,

telling us it is a kissing scene in the standing position. X and Y both equal 1. The “a” stands for actor and

the “s” stands for scene. What this tells us is that the animation affects actor 1 and that it is scene 1. If

there are more than one actor or scenes, then “a” and “s” will have other numbers after them.

You need to make sure the files have no spelling mistakes or deviations from the structure. Capitals or

lower case letters don’t affect it but if you then must all match.

Example of a matching set:

 rydin_kissing_standing_a1_s1.hkx

 rydin_kissing_standing_a1_s2.hkx

 rydin_kissing_standing_a2_s1.hkx

 rydin_kissing_standing_a2_s2.hkx

Example of a mismatching set:

 rydin_kissingstanding_a1_s1.hkx

 rydin_kissingstanding_a1_s2.hkx

 rydin_kissing_standinga2_s1.hkx

 rydin_kissing_standinga2_s2.hkx

In the above example of a mismatching set, the SLAnimGenerate.pwy will generate errors because will

not recognize that this is the same scene as one set is “kissingstanding” and the second is

“kissing_standing”. Also because there is a missing underscore between the animname and actor, it will

not recognize this HKX file as it is not in the correct structure.

It is important to note that actor 1 is generally the player role when animations are chosen by SexLab

(unless roles are defined by a script). Actor 2 and above will be either player or creature roles.

You also need to understand the basic file structure of files. If you are a beginner at modding, you may

not have looked inside the data folder much. You need to know where to put your HKX files. Putting

them in the incorrect folders will mean they may not be recognized by both SLAnimGenerate and by

the game itself, resulting in the actors standing around in idles during animations.

HKX files belong in the appropriate folders within the meshes folder. For example, actors all belong in

the following folder:

 Data/meshes/actor/character/animations/[packname]/

In the animations folder, “packname” will be whatever you call your pack.

Creatures have their own folders, so again you will need to put them in their corresponding folder. For

example, the draugr animations belong it:

 Data/meshes/actor/draugr/animations/[packname]/

So if for example If actor 1 and actor 2 are to be human animations, then all HKX files will go into the

/character/animations folder. How ever is actor 1 is human and actor 2 is creature, then actor 1

animations will go into the /character/animations folder and actor 2 will go into the /draugr/animations

folder. Failure to do so will result in the animations not playing in game.

It is important that you familiar yourself with the file structures and formulas. It is the ground work to

understanding what mods do and where the information needs to be and is pulled from.

PREPARING THE PACK

If you are just editing a pack that has already been made and you are just adding more animations, you can

skip this section.

Once you have the pack downloaded, the first thing to do is prepare the pack you want to make.

 It is recommended to work with the pack outside of your data folder. If you make any mistakes you

can easily delete any mistakes or start a fresh without potentially damaging your existing files for

the mod.

You should start off with the following files:

What you would need to create is a folder path to where your animations are going to be. In this guide

the pack will be called ‘SLAddAnims’. It will be highlighted in yellow. During this guide, if you have

called your pack something else, anything highlighted in yellow should be renamed to match what you

want your pack to be called.

The path you need to create is meshes > actors > character. Once these folders have been created, you

need to put two folders in the character folder, ‘animations’ and ‘behaviors’. (It is important you spell the

folders as they are shown in the guide. Spelling them differently will cause the pack to get errors).

Inside the animations folder you will put the title of your pack. Inside the below example we have used

SLAddAnims:

It is recommended that when you make a name for your pack to put this name without spaces as the folder

name.

Inside the SLAddAnims folder, you would place your HKX files in here:

With these files in place, you are now ready to start editing the text files to create the scripting for

Skyrim.

PREPARING THE SOURCE MATERIAL

The next thing to do is to prepare and edit the text file which will hold all the details for your pack which

the python program will read to create the appropriate scripts. Head over to the SLAnims > source

folder to find the example.txt file inside.

This little text file has been writing out by the mod creator Orxx on how to setup the source for the

python script to generate the scripts. You can follow the guide inside the text file or continue reading

this guide. Whichever guide you read, it is important that you follow them very closely, as errors in your

setup can cause errors in the python generate file or the output scripts for Skyrim and FNIS to read.

Anything line with the hash symbol (#) at the start is just a comment. These will not be read by the

python generate file when creating the scripts. There are a few lines in the top half of the text file which

do not have the hash symbol in front and these lines need to be amended. Below are those extracted

lines:

is_example = True

mcm_name = "Super Cool"

anim_dir("SuperCool")

anim_id_prefix("SC_")

anim_name_prefix("Super Cool ")

common_tags("SuperCool")

You can delete the comments with the hash symbol and leave the above lines in if you are confident and

comfortable that you understand what you are doing. This is optional. Just be sure not to delete the bottom

section that starts ‘Animation(‘ as this is your animation coding. If you do, do not worry as the coding will

be in this guide for you to copy and paste.

It is important that you understand what each of these lines of code mean to you and your pack to help

you make the best use of it. Don’t worry, they are very simple.

is_example = True

This line was added by the mod author to stop it showing up in the SLAnimGenerate.pyw dialogue.

Changing this to false means that it will show up as an option when using the SLAnimGenerate.pyw file.

You can either delete this line entirely or you can change it to false. I recommend changing it to false

and keeping the line in case you need to hide these text files from the generator in the future.

mcm_name = "Super Cool"

This will be the name of your pack as it shows up on the Mod Configuration Menu (MCM) in game.

anim_dir("SuperCool")

This will be the name of the animation directory. This should be the folder with the HKX files inside

them that we set up earlier in this guide. It is recommended to have no spaces in this name.

anim_id_prefix("SC_")

This will be the prefix name of the animations that will be coded for the FNIS file. Most commonly, this

will be the animator’s name, such as Leito, Arrok or Rydin. It is recommended to use an underscore (_)

after the name to keep the code clean and easily readable. It will be also used in the animation coding

covered later in this guide where examples will be given.

anim_name_prefix("Super Cool ")

This will form part of the name of the animation as it will appear in the MCM in game. Most commonly,

this will be the animator’s name, such as Leito, Arrok or Rydin. It must have a space before the last

quotation mark (“) or it will join up with the title of the animation in the MCM. It will be also used in the

animation coding covered later in this guide where examples will be given.

common_tags("SuperCool")

This is where you can set common tags that will feature on all of the animations in the pack. Most

commonly, this will be the animator’s name, such as Leito, Arrok or Rydin. If you were making a pack

that had all furniture animations, you could also add Furniture in this section. If the tags is not featured

in all animation, do not add it here as we will be able to add individual tags later in the animation

coding.

Here is the base coding without the SuperCool examples:

is_example = True

mcm_name = ""

anim_dir("")

anim_id_prefix("")

anim_name_prefix("")

common_tags("")

With the information above and using SLAddAnims as our example, the script would look like the

following:

is_example = False

mcm_name = " Additional SL Anims "

anim_dir("SLAddAnims ")

anim_id_prefix("SLAA_")

anim_name_prefix("SLAA ")

common_tags("SexLab")

To give an example of an animator such as Rydin, it would look like the following:

is_example = False

mcm_name = "Rydin’s Animations"

anim_dir("RydinAnimationPack")

anim_id_prefix("rydin_")

anim_name_prefix("Rydin ")

common_tags("Rydin")

Now you will be ready to code in the animations.

ADDING THE ANIMATIONS

Adding the animations has never been easier. The code is really simple and short. There is no papyrus

code to deal with and no compiling needed. Knowing what to put where, why to add it and what it does

will be covered in this topic to help you get to grips with adding the animations.

Below is the basic code for adding animations:

Animation(
 id=" ",
 name=" ",
 tags="",
 sound="”,
 actor1=,
 actor2=,
)

Each time you add a new unique animation, you will use the above code as the base code. There is an

extra line for stage parameters such as open or closed mouth and if the actor is silent or not but you

would only add this line if you need to change anything about the animation positions. We will cover

this later in the topic.

Let’s go over what each of the lines of code mean and do:

id=" ",

This line will be the ID of your animation. This will be how SexLab recognizes your animation if called

upon by name by any other mod. It ties up with anim_id_prefix to create the full ID of your animation.

Your ID should relate to the animation and generally be similar to the name of the animation but still be

unique that no other animation ID ends up with the same name. It is recommended to use an

underscore instead of a space or no spaces at all.

To give an example, let’s say we are adding a passionate kissing animation.

anim_id_prefix("SLAA_") + id=" Passionate_Kissing" = SLAA_ Passionate_Kissing

In the above example the prefix is added to the ID of the animation to create the full ID of the

animation. When the python generator turns the code into a test file for FNIS to read, it will use the

above logic to create the necessary lines of codes for FNIS to read. There is no need to add the actor (A)

or stage (S) details as the generator will pick this up automatically. We will cover this more later in the

guide.

name=" ",

This will hold the name of your animation as to how it will be seen in the MCM. It follows the same logic

that the ID has, where it will tie up with anim_name_prefix to create the full name of your animation.

These can have spaces and are recommended as this is what you will see in game.

To give an example, let’s say we are adding a passionate kissing animation.

anim_name_prefix("SLAA ") + name=" Passionate Kissing" = SLAA Passionate Kissing

tags="",

This is where we can add the individual tags for the animation. It is important that we add the tags

correctly as this will be what most mods use to call our animations or update things like statistics and

such. Adding the wrong tags or spelling it incorrectly could result in the animations not being called

upon or utilized correctly. There should be no spaces and each tag is separated by a comma (,).

sound="",

You can set the sound effects of the overall animation in here. The allowed values are Squishing,

Squirting, Sucking, SexMix and NoSound. If there are stages where there needs to be a different sound,

then put the sound in this box that will play in most of the animations. We can add an individual

parameter later for individual stages. This does not affect the moaning or voices of the actors, only the

sound effects.

actor1=,

This is where you will define the details for actor 1, which will majority of the time be the player and

female.

actor2=,

This is where you will define the details for actor 2, which will majority of the time be an NPC or

creature.

Now that we know what each section does, let’s look at a typical code set up. We will use the example

of passionate kissing.

Animation(
 id="PassionateKissing ",
 name=" Passionate Kissing",
 tags="Loving,Kissing",
 sound="NoSound”,
 actor1=Female(),
 actor2=Male(),
)

If we put the above code with the code we made earlier in prepared the source, we would have the

following.

is_example = False

mcm_name = " Additional SL Anims "

anim_dir("SLAddAnims ")

anim_id_prefix("SLAA_")

anim_name_prefix("SLAA ")

common_tags("SexLab")

Animation(
 id="PassionateKissing ",
 name="Passionate Kissing",
 tags="Loving,Kissing",
 sound="NoSound”,
 actor1=Female(),
 actor2=Male(),
)

We have now made one pack which features one animation to be added into game. To add more

animations, we would simply add another animation coding for the new animation.

is_example = False

mcm_name = " Additional SL Anims "

anim_dir("SLAddAnims ")

anim_id_prefix("SLAA_")

anim_name_prefix("SLAA ")

common_tags("SexLab")

Animation(
 id="PassionateKissing ",
 name="Passionate Kissing",
 tags="Loving,Kissing",
 sound="NoSound”,
 actor1=Female(),
 actor2=Male(),
)

Animation(
 id="SlowKissing ",
 name="Slow Kissing",
 tags="Loving,Kissing",
 sound="NoSound”,
 actor1=Female(),
 actor2=Male(),
)

We can do this as many times as we like to add as many animations as we want.

ADDING PARAMETERS

Parameters are added extra amendments to the animations such as positions, schlong alignment and

actor sounds. We may also add parameters to the actors such as adding cum, objects and more. In this

section, we will discuss the parameters separately.

It is important to know that you only need to add parameters to stages that need amending from the

default position. For example, if a scene has 5 stages and in the third stage needs to open their mouth,

we would set a parameter for that stage only to make the actor open their mouth. We do not need to

define every stage un less every stage needs to be amended from the default.

The defaults are that no cum is applied, the actors are not silent, their mouths are closed, there are no

SOS alignments, no rotations needed and there is no object attached.

For example, if doing a silent actor parameter for stages three and four, below is what NOT to do:

 a1_stage_params = [
 Stage(1, silent=False),
 Stage(2, silent=False),
 Stage(3, silent=True),
 Stage(4, silent=True),
 Stage(5, silent=False),
],

Whereas there would be no harm, it is not required and will just make you spend more unnecessary

time. You only need to define the stages that have changes:

 a1_stage_params = [

 Stage(3, silent=True),

 Stage(4, silent=True),

],

Below is a description of each parameter.

ADDING CUM

To add cum to an actor is very simple. Firstly, you need to decide if you adding cum to actor 1 or actor 2.

Secondly you need to decide where the cum will be added. A majority of the time the parameter will be

added to actor 1 who is generally the female character but it is not exclusive.

To add cum, you would add the following line after the actor’s gender:

 (add_cum=POSITION)

Position is where you would like the cum to be placed on the actor. The allowed values are Vaginal,

Oral, Anal, VaginalOral, VaginalAnal, OralAnal and VaginalOralAnal.

To give an example:

 actor1=Female(add_cum=Vaginal),

This tells SexLab to apply the cum to the vaginal area in the final stage.

It is not currently known if the add_cum parameter can be added to other stages other than the last stage

at this time.

OPEN MOUTH

In stages which features oral sex, the actor giving may require to have their mouth open on certain

stages. We would use the open_mouth=True parameter. To do this, we need to add a new line of code

underneath the actor2 line.

 a1_stage_params = [

 Stage(1, open_mouth=True),

],

a1_stage_params tells the game that for actor1, certain parameters are about to be set. The next lines

then set which stage have these additional parameters. In the above case, Stage 1 is going to require

the actor to have their mouth open.

SILENT ACTOR

This works very much like the open mouth parameter. This one says in the actor is silenced, such as no

moaning during a stage. We define this using the silent=True parameter.

 a1_stage_params = [

 Stage(5, silent=True),

],

The above is telling the game that a1 is silent for stage 5 only.

SCHLONGS

The SOS parameter allows you to amend the angle of the schlong when using Schlongs Of Skyrim. The

default is generally set to 3 but it can be anywhere between 0 (lowest, pointing towards the ground) to

9 (highest, pointing up to the sky). Most animations do not need the schlong to be aligned but if they

do, the SOS=X parameter to use, where X is a number between 0 and 9.

 A2_stage_params = [

 Stage(3, SOS=5),

],

The above is telling the game that the schlong of the second actor (if applicable) needs to be set at 5.

ANIM OBJECTS

Anim objects is an actor parameter. These are in game objects, items and furniture that get attached to

an actor to support a scene. They are added much like the add cum parameter but instead uses the

object parameter.

 actor2=Male(object="AOZaZPunishmentPillory"),

This is telling the game that a Punishment Pillory is needed for Actor 2 in all the scenes.

It is unknown how the mod currently handles animations objects that swap between actors or are not

required for all of the scenes. This is currently being questioned.

POSITIONING

Positioning an animation isn’t always required these days and most animators try and make sure they

work from their central point, their zero. But if users want to adjust the positions or animator’s may

have actors out of alignment, SexLab comes with the ability to amend the alignment. These are

handled by adding position parameters. The values are forward, up, side and rotate.

Take note that 0 is the central or base position. If you want to align the actor up 5 steps from the base

position, you would use up=5. If you want to move them down 5 steps from the base position you would

use negatives, so it would be up=-5. Use this logic for the other position parameters.

A2_stage_params = [

 Stage(3, up=5, forward=-15, rotate=-180),

],

The above code tells the game where to position the actor from the central point of the animation.

CREATURES

When an animation features a creature as one of the actors we need to define that it is a creature and

what race the creature is. In a majority of cases the creature is the second actor so we would add the

code as CreatureMale(race="INSERTRACE"). If we use the Draugr as an example, this is what we would

write:

actor2=CreatureMale(race="Draugrs"),

This is telling the game that the second actor is a male creature and the race is a draugr.

To find all the codes for creatures please refer to the Skyrim wiki found online.

GENERATING THE JSON AND FNIS FILE

Once you have a completed the source file you are read to generate the necessary files for the mod.

This is where the magic happens.

Navigate to the SLAnims folder and locate the SLAnimsGenerate.pyw file and run the file.

Ensure you have python 3.x installed at this point.

You will be presented with the below screen:

Now, if your categories box is blank, then you have left is_example as true. Make sure it is set to false

and save your file and click Build Categories at the bottom.

What you should see in the categories box is your text files in the source folder, whatever you have

named them. Here is an example:

When you select your pack from the list, the Animations box should populate with a list of the

animations from your source file, using the anim_name_prefix + name from your source file.

Now, if you have any errors at all anywhere in your setup, it will alert you to this with the following

message:

Clicking on the line will tell you what the error is and should point you to what the issue is. Errors will be

covered in a later section in the guide.

To create the JSON and FNIS files, simple click Build Categories (or all if you have more than one pack).

This will generate the required files for the mod and FNIS. You will get the details in a log out put at the

bottom.

If you haven’t already, you can now pack your files into a compressed file (zip or rar, etc) and add them

to your data directory, recommended by using a mod manager of your choice. Once you have the files

in your data folder there is one final step.

CREATING THE FNIS BEHAVIOR FILES

You are almost finish in completing your pack. The last and final step is to generate the behavior files

FNIS needs to complete the process.

With your files in your data folder (or virtual data folder), locate Generate FNIS for Modders and run the

program. Navigate to where your animations directory is and you should find a text file called

FNIS_[packnamehere]_list.txt which is where all the code for your animation is. Load this up and the

generator will create the appropriate behavior file in meshes/actors/character/behaviors called

FNIS_[packnamehere]_Behavior.HKX

Once this has been done, you are left to just run Generate FNIS for Users to add your files to the game.

ERROR MESSAGES

all actors must have the same number of animation stages:

This error happens when you do not have the same amount of stages for each actor. If you have two

actors, there should be one stage per actor, for three actors there is three stages per actor and so forth.

Even if one actor uses the same animations for multiple stages, you need one file per stage for each

actor.

no animation files found:

This error occurs when you have the animation anim_id_prefix and id does not match the name of the

HKX file. For example, if your anim_id_prefix is “SLAA_” and your animation id is “Passionate_Kissing”

then your HKX files should be SLAA_Passionate_Kissing_Ax_Sx.hkx. Any deviation will mean the

generator will not find the files. You should also check your animations are in the correct folder and

your anim_dir is set to the correct folder name. Again any deviations will cause the files not to be found.

If you received any more error messages, please copy and paste the message from the generator or

take a screenshot and post it to the support thread.

MAKING ANIAMTIONS PACKS TO SHARE

If you wish to share the animation pack you have just made, then all you need to do is put the files

together in a compressed file. The best thing to do is take your original template that you made and

add the behavior file that you created into the appropriate folder we made at the start of the guide.

Compress this and upload it and you are ready to share.

When sharing packs, you should consider for housekeeping to change the version number in the

generated FNIS file. If you go to the FNIS_[packnamehere]_list.txt inside the animations folder, at the

very top it will say ‘Version’ followed by a number. It is recommended you change this number manually

each time you release a new pack to the public, such as version 1.1 to version 1.2 for example for minor

updates. Change it to version 2.0 when you make some major changes. This is just a guide but you do

not need to follow the above logic. You will need to do this before you run Generate FNIS for Modders

or the changes will not be reflected in the behavior HKX file.

Remember to give credit to the animators. It’s great that you can make your own packs with your awn

amendments but remember that without the animators, you wouldn’t make the pack. Give credit to

those people when sharing packs and do not claims as your own.

You should also consider that your personal taste may not cater for everyone. Warnings or information

in what the pack contains and any specific information to help the user downloading know what they

are installing is a good idea too.

